

USN										
-----	--	--	--	--	--	--	--	--	--	--

15CS54

Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 Automata Theory and Computability

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following with example: (i) Alphabet (ii) String (iii) Language (06 Marks)
 - b. Draw a DFA to accept string of a's and b's ending with ab or ba.

(04 Marks)

- c. Draw a DFA to accept strings of a's and b's such that:
 - (i) Language has even number of a's and odd number of b's.
 - (ii) Language has not more than three a's.

(06 Marks)

OR

2 a. Define different types of finite state machines.

(04 Marks)

b. Minimize the following Finite state machine.

K	δ	0	1	
	\rightarrow A	В	Е	
	В	C	F	
	*C	D	Η	
	D	E	Η	
	Е	F	I	
	*F	G	В	
	G	H	В	
	Н	I	C	
	*I	A	Ε	

(06 Marks)

c. Convert the following ε - NFA to its equivalent DFA.

Fig.Q2(c)

(06 Marks)

<u>Module-2</u>

- 3 a. Define Regular expression and write R.E for the following language:
 - i) $L = \{a^{2n}b^{2m} \mid n \ge 0, m \ge 0\}$
- (ii) $L = \{a^n b^m \mid m \ge 1, n \ge 1, nm \ge 3\}$

(04 Marks) (06 Marks)

- b. Explain different types of grammars.
- c. Obtain a FSM from the following grammar:

$$S \rightarrow aT$$

$$T \rightarrow bT$$

$$T \rightarrow aW$$

$$W \rightarrow \epsilon$$

$$W \rightarrow aT$$

and obtain the equivalent regular expression.

(06 Marks)

OR

4 a. Define a Regular grammar. Design regular grammars for the following languages:

		(i) Strings of a's and b's ending with ab.	
		(ii) Strings of a's and b's having a substring aab.	(06 Marks)
	b.	State and prove pumping lemma for regulars languages.	(06 Marks)
	c.	Show that $L = \{WW^R \mid W \in (0+1)^*\}$ is not regular using pumping lemma.	(04 Marks)
		Module-3	
5	a.	Define context free grammar. Write a context free grammar for the language	
3	a.	L = $\{a^{n+2} b^m \mid n \ge 0 \text{ and } m > n\}$	(06 Marks)
	b.	Define ambiguity of a grammar. Check whether the following grammar is ambiguity	(06 Marks)
	υ.		ious of flot.
		$S \to aS X$	(0.43.6 1)
		$X \to aX a$	(04 Marks)
	c.	Simplify the following grammar:	
		$S \rightarrow aA a Bb cC$	
		$A \rightarrow aB$	
		$B \rightarrow a Aa$	
		$C \rightarrow cCD$	
		$D \rightarrow ddd$	(06 Marks)
		OR	
6	a	Define PDA. Obtain a PDA to accept $L = \{WW^R W \in \{a, b\}^*\}$. Write the transition	n diaamam
U	a.	Define PDA. Obtain a PDA to accept $L = \{w w \in \{a, b\} \}$. Write the transition	n diagram. (08 Marks)
	b.	Convert the following grammar into equivalent PDA.	(00 Marks)
	0.	$E \rightarrow E + T$	
		$E \rightarrow T$	
		$T \rightarrow T * F$	
		$T \rightarrow F$	
		$F \rightarrow (E)$	
		$F \rightarrow id$	(00 Marks)
		$r \rightarrow id$	(08 Marks)
		Module-4	
7	a.	State pumping lemma for context free languages. Show that $L = \{a^nb^nc^n \mid n \geq 1\}$	≥ 0 } is not
		context free,	(08 Marks)
	b.	What is a Turing machine? Explain different ways of representing Turing machin	
			(08 Marks)
		OR	
8	a.	What is an ID of a Turing Machine? Define the language accepted by a Turing M	
	1.		(04 Marks)
	b.	Design a TM to accept the language $L = \{a^n b^n \mid n \ge 1\}$	(06 Marks)
	c.	Explain Turing Machine Model.	(06 Marks)
		Module-5	
9	a.	What are the various techniques for TM construction?	(06 Marks)
	b.	Derive the following: (i) Recursively enumerable language (ii) Decidable language	
			(04 Marks)
	c.	What is post correspondence problem?	(06 Marks)
			ŕ
10		OR	(0.435 3 3
10	a.	What is halting problem? Explain.	(04 Marks)
	b.	Define the following: (i) Quantum computer (ii) Class NP	(04 Marks)
	c.	Explain Church Turing Hypothesis.	(08 Marks)
		* * * *	